D-SLAM: A Decoupled Solution to Simultaneous Localization and Mapping
نویسندگان
چکیده
The main contribution of this paper is the reformulation of the simultaneous localization and mapping (SLAM) problem for mobile robots such that the mapping and localization can be treated as two concurrent yet separated processes: D-SLAM (decoupled SLAM). It is shown that SLAM with a range and bearing sensor in an environment populated with point features can be decoupled into solving a nonlinear static estimation problem for mapping and a low-dimensional dynamic estimation problem for localization. This is achieved by transforming the measurement vector into two parts: one containing information relating features in the map and another with information relating the map and robot. It is shown that the new formulation results in an exactly sparse information matrix for mapping when it is solved using an Extended Information Filter (EIF). Thus a significant saving in the computational effort can be achieved for large-scale problems by exploiting the special properties of sparse matrices. An important feature of D-SLAM is that the correlation among features in the map are still kept and it is demonstrated that the uncertainty of the feature estimates monotonically decreases. The algorithm is illustrated and evaluated through computer simulations and experiments.
منابع مشابه
Effects of Moving Landmark’s Speed on Multi-Robot Simultaneous Localization and Mapping in Dynamic Environments
Even when simultaneous localization and mapping (SLAM) solutions have been broadly developed, the vast majority of them relate to a single robot performing measurements in static environments. Researches show that the performance of SLAM algorithms deteriorates under dynamic environments. In this paper, a multi-robot simultaneous localization and mapping (MR-SLAM) system is implemented within a...
متن کاملMap-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots
In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...
متن کاملD-SLAM: Decoupled Localization and Mapping for Autonomous Robots
The main contribution of this paper is the reformulation of the simultaneous localization and mapping (SLAM) problem for mobile robots such that the mapping and localization can be treated as two concurrent yet separated processes: D-SLAM (decoupled SLAM). It is shown that SLAM can be decoupled into solving a non-linear static estimation problem for mapping and a low-dimensional dynamic estimat...
متن کاملNew Adaptive UKF Algorithm to Improve the Accuracy of SLAM
SLAM (Simultaneous Localization and Mapping) is a fundamental problem when an autonomous mobile robot explores an unknown environment by constructing/updating the environment map and localizing itself in this built map. The all-important problem of SLAM is revisited in this paper and a solution based on Adaptive Unscented Kalman Filter (AUKF) is presented. We will explain the detailed algorithm...
متن کاملSimultaneous Localization and Mapping in Structured Environment Based on Point Feature
Simultaneous Localization and Mapping (SLAM) is the basis for autonomous navigation of underwater vehicles, and main solution to SLAM is based on extended Kalman filter (EKF). In order to obtain a more precise trajectory and map result, this paper describes a SLAM approach, which combines SLAM theory with other sensors update to locate and map for robot, namely not only adopts sonar information...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- I. J. Robotics Res.
دوره 26 شماره
صفحات -
تاریخ انتشار 2007